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Functional connectivity of an individual human brain is often studied by acquiring a resting state functional
magnetic resonance imaging scan, and mapping the correlation of each voxel's BOLD time series with that of a
seed region. As large collections of such maps become available, including multisite data sets, there is an
increasing need for ways to distill the information in these maps in a readily visualized form. Here we propose
a two-step analytic strategy. First, we construct connectivity–distance profiles, which summarize the
connectivity of each voxel in the brain as a function of distance from the seed, a functional relationship that
has attracted much recent interest. Next, these profile functions are regressed on predictors of interest,
whether categorical (e.g., acquisition site or diagnostic group) or continuous (e.g., age). This procedure can
provide insight into the roles of multiple sources of variation, and detect large-scale patterns not easily
available from conventional analyses. We illustrate the proposed methods with a resting state data set pooled
across four imaging sites.
d Adolescent Psychiatry, New
ve., 16th floor, New York, NY

l rights reserved.
© 2011 Elsevier Inc. All rights reserved.
Introduction

The last several years have witnessed a surge of interest in
studying brain connectivity by functional magnetic resonance
imaging (fMRI) of the resting brain (e.g., Biswal et al., 1995;
Damoiseaux et al., 2006; Margulies et al., 2007; Roy et al., 2009).
Resting state functional connectivity (RSFC) is often represented by
mapping the correlation of each voxel's BOLD time series with that of
a pre-defined “seed” region of interest (ROI). With the growing
availability of large collections of such maps, including multisite data
sets (Biswal et al., 2010), there is an increasing need for ways to
summarize such data and to visualize them at a glance—both for
quality assurance and to understand different sources of variation.

Here we describe a novel technique to summarize three-
dimensional seed-based RSFC maps into one-dimensional functions
by collapsing them along a dimension representing physical distance
from the seed, a quantity whose relationship with RSFC has been a
topic of recent interest. For example, Kelly et al. (2009) chose five seed
ROIs in the anterior cingulate cortex and examined how whole-brain
connectivity with these seeds varied with age. Compared to children,
adults were found to have more significantly correlated voxels at long
distances from the seed ROI (see also Andrews-Hanna et al., 2007). In
related work studying connectivity graphs among several dozen
ROIs rather than connectivity of all voxels with a seed ROI, Fair et al.
(2007, 2009) have proposed that the maturing brain progresses from
“local” networks of short-range connections to a more “distributed”
architecture incorporating longer-range connections. Thus, distance is
a natural and informative dimension along which RSFC maps can be
characterized.

Our proposed analytic strategy has two basic components. First,
nonparametric quantile regression (Koenker, 2005) is used to derive
subject-specific curves representing RSFC as a function of distance
from the seed. We refer to these curves as “connectivity–distance
profiles.” Second, by viewing these profiles as “functional data
objects” (Ramsay and Silverman, 2005), one can regress them on
subject-specific predictors of interest using a fast new implementa-
tion of function-on-scalar regression (Reiss et al., 2010). Such
regression analyses may reveal, for example, how short- or long-
range connectivity develops with age, or how it differs between
diagnostic groups.

We illustrate the utility of this strategy by analyzing a combined
resting state data set acquired at four different labs, using six seed
ROIs that have been well characterized in resting state fMRI studies
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mailto:phil.reiss@nyumc.org
http://dx.doi.org/10.1016/j.neuroimage.2011.01.071
http://www.sciencedirect.com/science/journal/10538119


141P.T. Reiss et al. / NeuroImage 56 (2011) 140–148
(Fox et al., 2005). Connectivity–distance profiles with respect to the
six seed ROIs provide strong visual evidence of systematic between-
site differences, in line with the findings of Biswal et al. (2010). On
the other hand, the age distributions for the four samples differ
markedly, so that, in view of the above-cited evidence of age effects,
the between-site differences could perhaps be due to age disparities.
In other words, age and site may be acting as mutual confounders.
Our proposed regression methodology offers a means to sort out the
effects of age and site on RSFC.
Statistical methodology

Individual connectivity–distance profiles

We begin by explaining how to define, for an individual par-
ticipant, a profile that captures the relationship between functional
connectivity of a seed ROI and distance from that seed. Assume that
there are V voxels in the brain and that, for j=1,…,V, the jth voxel lies
at distance sj from the center of the seed. (In what follows, we use
simple Euclidean distance, although other distance measures such as
geodesic distance can be substituted.) For each j, the RSFC cj with the
seed can be defined as the Pearson correlation of voxel j's BOLD signal
during the scan with the BOLD signal for the seed region, following
suitable preprocessing steps. The simplest reasonable definition of
the connectivity–distance profile would be the estimated average
connectivity as a function of distance from the seed. The estimate
could be obtained by applying nonparametric regression (smoothing)
methodology (e.g., Simonoff, 1996) to the scatterplot of connectivity
vs. distance (as in the red curve in Fig. 1). This approach seeks to
estimate a smooth function y(s) such that

cj = y sj
� �

+ εj ð1Þ

where εj is a random error term with expectation zero. The implicit
simplifying assumption is that the expected value of cj depends only
on the distance of voxel j from the seed. Of course, in reality, two
voxels at the same distance from the seed but in different directions
may tend to differ systematically in RSFC due to various factors (e.g.,
they may belong to completely distinct brain structures or functional
networks). However, for purposes of a straightforward exploratory
analysis, we allow the distribution of εj to incorporate any such
systematic effects, as well as truly random error.
Fig. 1. Scatterplot of each voxel's connectivity with the lateral parietal seed of Fox et al. (200
shown in red, and nonparametric quantile regression fits (estimates of the 5th and 95th co
The smooth profile function y(s) given by Eq. (1) is the conditional
expectation (mean) of c given distance s,

y sð Þ = E c jsð Þ; ð2Þ

i.e., the average connectivity value on a sphere of radius s centered
at the seed. However, scientific interest focuses less on average
connectivity values than on finding regions whose connectivity with
the seed is particularly strong (e.g., Kelly et al., 2009). This suggests
that, instead of the conditional expectation [Eq. (2)], it is more useful
to define the connectivity–distance profile by the conditional qth
quantile y(q)(s)=F−1(q|s), for a value q close to 1 (e.g., the upper
green curve in Fig. 1). Here F(⋅|s) denotes the cumulative distribution
function of the RSFC values conditional on distance s. The function y(q)
can be estimated by nonparametric quantile regression methods
(Koenker et al., 1994; Koenker, 2005). The chosen q should be high
enough to capture extreme RSFC values, but not too high since the
standard errors of the quantile estimates increase as q approaches 1.
In what follows, we assume q=0.95. Informal sensitivity analyses
suggest that q=0.9 or q=0.99 results in very similar function
estimates.

In addition to high-connectivity profiles based on the 95th
percentile of RSFC as above, we can define low-connectivity profiles
based on the 5th percentile (e.g., the lower green curve in Fig. 1).
The latter might be useful when interest focuses on negative corre-
lations between regions. In the analyses reported below, the low-
connectivity profiles were typically negative except at short distances
from the seed.

In summary, an individual's connectivity–distance profile captures
the magnitude of RSFC with relatively strongly connected regions
at any given distance from the seed. This representation of the
relationship between distance and RSFC enables us to study between-
group differences in short- and long-range connectivity, by means of
the functional regression methodology described next.

Group analyses by function-on-scalar regression

The (high- or low-) connectivity profiles estimated for each of N
participants, as described above, can be denoted by ŷ(q)1(s),…, ŷ(q)N(s).
For simplicity, we shall treat them as known functions and suppress
the dependence on q, resulting in the simpler notation y1(s),…, yN(s).
Statisticians refer to data of this type as functional data, indicating that
the observation for each participant consists of an entire function.
Research on functional data analysis (Ramsay and Silverman, 2005)
has produced functional-data analogs of many classical statistical
5) vs. distance from the seed, for a single participant. A nonparametric regression fit is
nditional percentiles) are shown in green.
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techniques (see Viviani et al., 2005; Zhou et al., 2009, for previous
applications to fMRI). In particular, multiple linear regression can be
extended to the case of functional outcomes such as our connectivity–
distance profiles (or other imaging-derived functions; see Zhu et al.,
2010, for an application to diffusion tensor imaging tracts). The
classical multiple regression model is given by

yi = xTi β + εi; ð3Þ

where yi is a scalar representing an outcome for the ith participant, xi
is a p-dimensional vector of predictor variables for that subject, β=
(β1,…, βp)T is a vector of corresponding effects, and εi represents
random error. A natural generalization of Eq. (3) to settings such as
ours, in which each yi is a function, is the functional linear model

yi sð Þ = xTi β sð Þ + εi sð Þ; ð4Þ

in which xi is a vector of predictors as in Eq. (3), but the estimand β=
[β1(⋅),…,βp(⋅)]T is now a vector of functions (i.e., a vector-valued
function) and the errors εi are functions. Two basic special cases of
model (4) are of particular interest:

1. The one-way functional ANOVAmodel. Here the N participants are
divided into G groups, such as different sites at which the resting
state scans were acquired. If we denote by g(i) the group to
which participant i belongs, and let xi=(1,Ig(i)=1,…,Ig(i)=G)Twhere
Ig(i)=k equals 1 if subject i belongs to group k and 0 otherwise, then,
with a change of notation for the functional coefficient β, model (4)
becomes yi=μ(s)+τg(i)(s)+εi(s). The functions τ1,…,τG represent
groupeffectswhich, for identifiability, are assumed to satisfy∑k=1

G τk
(s)=0 for all s. As discussed below, this model can be used to test for
group differences in the average profile.

2. Function-on-scalar regression with a single continuous predictor
If xi=(1,xi)T for a continuous covariate xi, say age, then model (4)
can be written as

yi sð Þ = β1 sð Þ + xiβ2 sð Þ + εi sð Þ: ð5Þ

Then β2(⋅) represents the effect of age, and for any x, the function
ŷ(⋅)=β1(⋅)+xβ2(⋅) represents the expected value of y(⋅) (i.e.,
the typical profile) conditional on age x. This model can be used to
test for age effects.

As an aid to interpretation, it may be noted that if we took β2(s)=
β2s, the second term on the right side of model (5) would reduce to
an ordinary interaction between xi (age) and s (distance)—meaning
that distance moderates the effect of age on connectivity, or
alternatively that age moderates the distance-connectivity relation-
ship. Model (5) goes beyond conventional moderation analysis
in two ways: we allow the age effect to depend nonlinearly on s, and
we extend the framework to modeling entire RSFC maps, by
employing connectivity–distance profiles to capture the most salient
information in these maps.

Estimating the functional linear model

To estimate the coefficient functions β1(⋅),…,βp(⋅), we posit that
each lies in the span of a set of smooth basis functions θ1(⋅),…,θK(⋅)
defined on S, the range of distances of voxels from the seed. We
choose a basis of cubic B-splines (see de Boor, 2001, for background).
Since smoothness is controlled by the parameters λ1,…,λp introduced
below, the precise choice of the number of basis functions K is
generally seen as much less critical, as long as it is large enough to
capture the detail of the function(s) being estimated (Ruppert, 2002;
Wood, 2006, p. 161); thus K is usually chosen informally, with values
of 20–30 being typical. Restricting the coefficient functions in this way
allows us to write β(s)=Bθ(s) for some p×K matrix B=(b1…bp)T,
where θ(s)=[θ1(s),…,θK(s)]T. Fitting model (4) is thus reduced to
estimating the pK elements of B. To do so, we minimize the penalized
integrated sum of squared errors (SSE)

∑
N

i=1
∫
S
yi sð Þ−xTi Bθ sð Þ
h i2

ds + ∑
p

m=1
λmb

T
m Jbm ð6Þ

where λ1,…,λp are nonnegative constants, and J is the K×K matrix
with (i, j) entry ∫Sθi′′(s)θj′′(s)ds. The second term above equals
∑m=1

p λm∫Sβm′′(s)2ds, and is known as a roughness penalty, since its
effect is to discourage excessive roughness or wiggliness in the
estimates of the functions βm. The vector λ=(λ1,…,λp)T of smoothing
parameters, which controls the extent to which roughness is
penalized, can be chosen to minimize the “leave-one-function-out”
cross-validation score (Rice and Silverman, 1991)

∑
N

i=1
∫
S
yi sð Þ−ŷ −ið Þ

i s;λð Þ
h i2

ds; ð7Þ

where ŷ −ið Þ
i ⋅;λð Þ is the predicted value for the ith connectivity–

distance profile, based on the model fitted to the other N-1 profiles
with smoothing parameters λ. In practice, it is often sufficient to use
a common smoothing parameter λ1=…=λp=λ for all p coefficient
functions. Traditionally, optimal smoothing by cross-validation has
been computationally laborious for function-on-scalar regression
(Ramsay et al., 2009, p. 154), but Reiss et al. (2010) show how the
process can be made dramatically faster. Construction of confidence
intervals for the coefficient functions is also described by Reiss et al.
(2010).

We note that the functions y1,…,yN may be projected onto the
basis θ1,…,θK in order to make the integral in Eq. (6) computable.
Alternatively, one may fit model (4) using the raw values of the
functions. See Ramsay and Silverman (2005) and Reiss et al. (2010)
for further details.

Hypothesis testing

It may often be of interest to assess formally the effect of predictors
such as age or diagnostic group on the connectivity–distance profiles.
This can be formulated as testing a null model E[y(s)]=x0

Tβ0(s)
against the alternative model E[y(s)]=x1

Tβ1(s) where x0 is a predictor
vector of length m0 contained within the vector x1 of length m1Nm0.
Let β̂0 and β̂1 be the coefficient function estimates for the twomodels.
Using the notation SSE0(s)=∑ i=1

N [yi(s)−x0i
T β̂0(s)]

2 and SSE1(s)=
∑ i=1

N [yi(s)−x1i
T β̂1(s)]

2, we can define a pointwise F-statistic at s by

F sð Þ = SSE0 sð Þ−SSE1 sð Þ½ �= m1−m0ð Þ
SSE1 sð Þ= N−m1ð Þ ð8Þ

(Ramsay and Silverman, 2005). We can test F(s) at all distances
simultaneously, i.e., in a manner that takes into account the multiple s
values being tested, by a permutation testing approach (Nichols and
Holmes, 2001). By randomly generating many data sets in which the
predictor values are permuted, we simulate the null distribution of
sups∈ S F(s). The null model is then rejected at the 100α% level if, for
some s, F(s) exceeds the 100(1−α) percentile of the permuted-data
values of sups∈ S F(s). Note that when this procedure rejects the null
hypothesis, it also identifies the distances s at which the evidence
against the null is strong.

Model selection

In the hypothesis testing framework, strong evidence against a
simpler (null) model is required in order to reject it in favor of a more
complex model. However, hypothesis testing may not always be the
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most appropriate inferential paradigm. For example, the above
permutation test procedure may find each of several scalar predictors
to be significant, but we may be interested in knowing which of these
is the most predictive of the connectivity–distance profile. More
generally, whenever the candidate models are not all nested in each
other, we may wish to select the model that optimizes a goodness-of-
fit criterion. A natural criterion to use is the cross-validated integrated
square error [Eq. (7)].

The relative usefulness of different candidate models may vary as a
function of the distance s from the seed. Thus, as an alternative to
choosing the model minimizing Eq. (7) as the globally “best” model,
Reiss et al. (2010) propose to perform pointwise model selection at
each s, by comparing the candidate models in terms of the pointwise
SSE

∑
N

i=1
yi sð Þ−ŷ −ið Þ

i sð Þ
h i2

; ð9Þ

i.e., the integrand in Eq. (7).

Data acquisition and processing

Image acquisition

The functional imaging data were collected at four sites contrib-
uting to the 1000 Functional Connectomes Project (http://www.nitrc.
org/projects/fcon_1000). Data sets and associated scan parameters
are available at the above URL, where the sites are referred to as
Bangor (20 participants), Orangeburg (20), NewYork_a (59), and
Newark (19); we refer to them below as sites A–D, respectively.

Image preprocessing

All resting state scans were preprocessed using both AFNI (Cox,
1996) and FSL (www.fmrib.ox.ac.uk). After discarding the first five
time points of every scan, the data were corrected for motion by
aligning each volume to themean image using Fourier interpolation in
AFNI. Next, the data were spatially smoothed using a 6 mm FWHM
Gaussian kernel, and mean-based intensity normalization was
performed by scaling all volumes by the same factor. The data were
then temporally filtered using both a high-pass filter (Gaussian-
weighted least-squares straight line fitting, with σ=100.0 s) and a
low-pass Gaussian filter (FWHM 2.8 s), followed by linear detrending
to remove any residual drift.

Registration

Each individual's high-resolution anatomical image was registered
to a common stereotactic space (the Montreal Neurological Institute
152-brain template [MNI152]; 3 mm3 resolution) using a 12-degrees-
of-freedom linear affine transformation implemented in FMRIB's
Linear Image Registration Tool (FLIRT), an FSL tool (Jenkinson and
Smith, 2001; Jenkinson et al., 2002). After aligning each individual's
fMRI data to the corresponding high-resolution anatomical image, the
obtained affine transformation was applied to register the fMRI data
to the common stereotactic space.

Functional connectivity: seed-based correlation analysis

Consistent with common practice in the resting state functional
imaging literature (e.g., Biswal et al., 2010), nuisance signals were
regressed out from the data prior to RSFC analyses, to control for the
effects of physiological processes such as motion, cardiac and
respiratory cycles. Specifically, we regressed each individual's 4D
data on the following nine predictors: white matter (WM), cerebro-
spinal fluid (CSF), the global signal (average time series across all
brain voxels), and six motion parameters (movement in the x, y and z
directions and rotational movement around 3 axes). To generate
the WM and CSF covariates, we segmented each individual's high-
resolution structural image using FMRIB's Automated Segmentation
Tool (FAST) in FSL, and thresholded the resulting segmented WM
and CSF images to obtain masks of ≥80% tissue type probability.
Each individual's WM and CSF time series were then calculated by
averaging across voxels in the respective masks.

We created six 7.5 mm-radius (33-voxel) seed ROIs centered on
the coordinates previously employed by Fox et al. (2005) to examine
RSFC for each of six regions, three within the “task-positive” network
and three within the “task-negative” network. (These terms refer to
brain regions that are more active or less active, respectively, during
goal-directed tasks than during rest.) The ROIs within the task-
positive network were located in the intraparietal sulcus (IPS; -25,
-57, 46), the right frontal eye field (FEF) region of the precentral
sulcus (25, -13, 50), and the middle temporal region (MT+; -45, -69,
-2). The task-negative network seed ROIs were located in left lateral
parietal cortex (LP; -45, -67, 36), medial prefrontal cortex (MPF; -1,
47, -4), and posterior cingulate/precuneus (PCC; -5, -49, 40). Results
for the LP seed are given below; plots corresponding to Figs. 3 and 4,
for the other five seeds, are provided as Supplementary material.

We extracted the seed time series by averaging across all voxels in
each seed ROI from each individual's residual 4D data in MNI152
standard space. For each individual, we determined the correlation
between the seed region's time series and that of each voxel in
the brain (67,748 voxels in all, excluding the center of the seed), using
the AFNI program 3dFIM+in native functional space. Finally, the
resulting individual-level correlation maps were converted to z-value
maps using Fisher's z transformation.

Application of the proposed methods to the four sites' data

Given the differences among the four sites with respect to data
acquisition protocol, scanner, and participant population, we assessed
(a) whether the sites differ with respect to LP connectivity as a
function of distance, and (b) whether any such differences might be
accounted for by sample characteristics, in particular age. After
calculating 95th- and 5th-percentile connectivity–distance profiles
for each participant, we compared five function-on-scalar regression
models: (i) the null model (i.e., estimating the mean connectivity
profile only), and regressions on (ii) site, (iii) age, (iv) site and age,
and (v) site, age, and site-by-age interaction. The functional data
analysis methods described above were implemented in R version
2.9.0 (R Development Core Team, 2010). Nonparametric quantile
regression was performed with the R package quantreg (Koenker,
2009), and the resulting individual-specific profiles were converted
into functional data objects using the R package fda (Ramsay et al.,
2009). More specifically, these profiles were projected onto a cubic
B-spline basis with 25 equally spaced knots spanning the range of
distances from the seed, yielding basis dimension K=27 (see de
Boor, 2001; Ramsay and Silverman, 2005, for details of B-spline
basis construction). Functional linear modeling was implemented
with the R package refund (Reiss and Huang, 2010), available at
http://cran.r-project.org/web/packages/refund or from the authors.

Results

Fig. 2 shows the connectivity–distance profiles for both high and
low connectivity at the four sites, with respect to the LP seed. Overall,
site A's profiles are the most extreme (highest for high connectivity,
and lowest for low connectivity), whereas site B's profiles are the least
extreme. However, the boxplots indicate that site A had the youngest
participant pool, whereas site B had the oldest. This raises the
question as to whether the apparent between-site differences reflect
imaging-related factors (e.g., different scan parameters or magnet

http://www.nitrc.org/projects/fcon_1000
http://www.nitrc.org/projects/fcon_1000
http://www.fmrib.ox.ac.uk
http://cran.r-project.org/web/packages/refund
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strength), or are primarily attributable to age disparities among the
four sites.

To help answer this question, we applied our model selection
approach to models (i)–(v) referred to above. For each of the four
non-null models, Fig. 3 displays the ratio of the pointwise cross-
validation score [Eq. (9)] to the score for the null model. All curves lie
mostly below 1, indicating that all four models have some predictive
value at most distances from the seed. Overall, the site-and-age main
effects model appears best, with the site-only model a close second.
This suggests systematic differences among the four sites, as well as
possible age effects at some distances from the seed. The relatively
poor performance of the interaction model suggests that age effects
are quite consistent across sites.

Further insight can be gained from Fig. 4, which presents
estimates from the regression on site and age [model (iv)]. The
most striking between-site differences – in particular, the mean for
site A lies above the overall average, whereas that for site B lies
below – occur for the high-connectivity profiles at short distances.
This is consistent with the observation that, in the left panel of Fig. 3,
the lowest portions of the curves for all four non-null models occur
at the shortest distances from the LP seed ROI. Note, however, that
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the multiple (in theory, infinitely many) points along the functions.
The age effect estimates suggest that high-connectivity profiles tend
to decrease with age in the regions below 20 mm and around
50 mm.

We next consider simultaneous testing, to deal with the multiple
testing issues not taken into account in Fig. 4. Results of permutation
tests for age and site effects on the high-connectivity profiles are
shown in Fig. 5. As the two upper plots show, when tested against the
null model, both site and age are found to be significant at almost all
distances from the seed. These plots provide little guidance as to
whether the between-site RSFC differences are in fact due to age
disparities. However, when testing age controlling for site and vice
versa – in other words, testing model (iv) against model (ii) or model
(iii) – the site effect remains intact, whereas the age effect appears
significant only in two distance ranges, for short distances and
(marginally) around 50 mm from the seed, corresponding to the two
main troughs in the lower left plot of Fig. 4.

These results suggest that while the shape of the connectivity–
distance profiles tends to be similar across sites, there are important
between-site differences. These differences may be attributable in
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four sites (black curves, with confidence intervals shown in blue). The grey curves represent overall mean functions for the entire sample. Last two plots: age effect estimates and
confidence intervals.
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part to the different magnets. For instance, site B's 1.5-T magnet has
inherently lower signal-to-noise ratio than those at the other sites,
which likely resulted in attenuated correlations with the seed.
This could help to explain the relatively low magnitude of site B's
profiles.

Fig. 6 provides an alternative view of the age effects on both high-
and low-connectivity profiles, controlling for site. The green and blue
lines are expected profiles (for an “average” site) at the first and third
quartiles of the pooled age distribution (ages 23 and 35, respectively).
Yellow shading indicates distances at which the permutation tests for
high connectivity (see the lower left plot in Fig. 5) or low connectivity
(not shown) found age effects significant at the 5% level. Excluding
very short distances, the clearest discrepancy between the blue and
green curves (i.e., age effect) is around 50 mm from the LP seed (the
corresponding peak in the lower left plot in Fig. 5 is at the threshold of
permutation test significance). This marked discrepancy coincides
with a major peak in both expected high-connectivity profiles. More
generally, these data suggest that with increasing age, the expected
profiles for both high and low RSFC tend to be attenuated across the
range of distances, in particular at peaks. This age effect (cf. the age
effects in Fig. 4, and parallel results in the Supplementary material,
especially for the PCC seed) may suggest a continuation, from early
to mid-adulthood, of the shift toward a more distributed RSFC
architecture that occurs from childhood to adulthood (Fair et al., 2007,
2009; Kelly et al., 2009).

It is interesting to contrast Fig. 6 with Fig. 7, which displays
thresholded z-statisticmapsproducedbyusing thegeneral linearmodel
(GLM) implemented in FSL to perform a voxelwise group analysis of
RSFC. The red and blue regions are those inwhich connectivity with the
seed is significantly positive or negative, respectively (pb .05, corrected
byGaussian randomfield theory). Yellowandgreendenotepositive and
negative age effects. The negative age effect cluster lies in a region of
positive connectivity immediately around the seed, consistent with the
negative age effect at short distances in Fig. 6. Although our method
provides information about the tails of the RSFC distribution within a
sphere of any given radius centered at the seed, it cannot pinpoint the
location of clusters of significant voxels.Moreover, ourmethod does not
find a significant positive age effect at long distances corresponding to
the clusters shown in yellow in Fig. 7. On the other hand, Fig. 6 reveals at
a glance the overall pattern that gives rise to these clusters, namely, an
attenuation of negative connectivities at all distances from the seed. This
global pattern cannot be discerned from Fig. 7, but for some purposes
may be more important than particular suprathreshold clusters. For
instance, overall patterns of this kind might be helpful for succinctly
comparing the effect of a covariate on different seeds' connectivity
maps.
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Fig. 5. Permutation tests for effects of age and site on the high-connectivity profiles. The two upper plots refer to models with age alone or site alone. The blue curves give F-statistics
[Eq. (8)] at each distance from the LP seed; the grey curves do the same for each of 499 permuted data sets; and the red dashed line indicates the threshold for significance at the 5%
level. The two lower plots are similar, but refer to testing each predictor with the other predictor in the model.
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Discussion

We have introduced a straightforward methodology that uses
nonparametric quantile regression to summarize whole-brain RSFC
with a seed as a function of distance, and regresses functions of this
kind on subject-specific predictors. Our example application, using a
pool of participants scanned at four different sites, demonstrates the
utility of this approach for comparing groups and studying covariate
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Fig. 6. Expected high- and low-connectivity profiles at the first and third quartiles of the
age distribution for the four sites. Yellow shading indicates distances from the LP seed at
which the permutation tests (displayed at lower left in Fig. 5 for high connectivity)
found significant age effects.
effects. In particular, our analysis (a) confirmed the existence of
site effects over and above age differences among the four samples
(Fig. 5), and (b) revealed a general tendency toward less extreme
connectivities with increasing age (Fig. 6).

The connectivity profiles we have proposed are reminiscent of
Figs. 2 and 6 of Andrews-Hanna et al. (2007), which present average
z-transformed correlations for two age groups along a line from a seed
region to a prespecified “target region.” Considering only voxels along
a particular line segment obviates the need for the quantile regression
procedures that we employ. However, our approach does not require
specifying a target region, and thus allows for exploration of whole-
brain RSFC with the given seed.

In addition to their role in understanding how different sources of
variation affect seed-based RSFC, connectivity–distance profiles can
prove very useful for quality assurance. For example, while preparing
the analyses presented above, we initially found one participant's
high-connectivity profile to differ markedly from the rest of the
sample. Further investigation traced this anomaly to a preprocessing
error that otherwise might have gone undetected.

Our statistical methodology may be extended in several ways.
Functional mixed effects models (e.g., Guo, 2002) can handle multiple
sources of random variation; in our case, each individual's measured
profile would be modeled as a sum of appropriate fixed effect curves
plus a random effect curve plus measurement error. Such models are
more computationally intensive than the fixed effects model pursued
here, especially for large numbers of profiles (but see Greven et al.,
2010, for recent advances). Another possible avenue for further
research would be to combine the nonparametric quantile regression
and the functional linear model into a single step. This is the approach
of varying-coefficient quantile regression models (e.g., Cai and Xu,
2008), and it would be interesting to see if such models are com-
putationally feasible with tens of thousands of data points per
individual.



Fig. 7. Regions of significant positive (red) and negative (blue) connectivity with the LP seed (white), and regions exhibiting positive (yellow) or negative (green) effects of age on
RSFC with the seed, based on a GLM implemented through FSL FEAT (ordinary least squares; pb .05, corrected by Gaussian random field theory). The model included site and age, as
well as gender, as covariates.
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One limitation of our method is that if several regions of roughly
equal distance are highly correlatedwith the seed, but the connectivity
of only one of these regions is related to a predictor such as age, our
model might fail to detect this effect. If an a priori hypothesis, or the
investigators' interest, focuses on voxels within a geometrically or
anatomically defined portion of the brain, one can make the analysis
more sensitive by applying a mask to retain only those voxels.

Several choices were made in defining the seed-based RSFC maps
on which the connectivity–distance profiles were based. In accor-
dance with common practice, RSFC was defined as simple correlation,
and the seed time series was computed by averaging over all voxels
within the seed region. It should be noted that other measures of time
series similarity are available (Liao, 2005), and that some authors use
the first principal component to derive the seed time series (Boly
et al., 2008). We regressed out the whole-brain or global signal prior
to computing the resting state correlations, yet there has been
much debate about the meaning of the negative correlation estimates
that result from this step (e.g., Murphy et al., 2009; Chang and Glover,
2009; Van Dijk et al., 2010). However, none of these choices is
fundamental to the proposed functional regression methodology; as
such, evaluation of alternatives lies beyond the scope of this paper.

The seed-based RSFC paradigm has been criticized for its reliance
on an a priori selected region of interest and for its inability to provide
information about causal relationships (Boly et al., 2008). The former
limitation actually points to a virtue of our approach; applying it to
multiple seeds would be a fast and straightforward way to identify
seeds of interest, which could subsequently be examined by standard
voxelwise group analyses. At any rate, we wish to emphasize that our
method has numerous potential applications beyond seed-based
connectivity. The horizontal and vertical axes of the functional data
can refer to any two voxelwise quantities whose functional relation-
ship is of interest. For example, one might wish to study profiles
representing amplitude of low-frequency fluctuations (ALFF; Zuo
et al., 2010) as a function of cortical thickness (Hutton et al., 2008),
regional homogeneity (Zang et al., 2004), or voxel-based morphom-
etry measures (Ashburner and Friston, 2000).

More generally, as noted above, our model can be thought of as an
extension of moderation analysis to a class of more complex questions
arising in neuroimaging—questions of the form: Does variable x affect
the tendency for voxels with certain values of s to have unusually high
values of y? In this paper, s was distance from a seed, y referred to
RSFC with that seed, and x was age or site. But any of s, y or x, or all
three, might be different in other applications. With the proliferation
of ever-richer data sets combining multiple imaging modalities with
large collections of clinical and demographic variables, the need to
uncover such complex relationships is growing rapidly. We believe,
therefore, that the approach presented here could be adapted tomany
other settings, and could prove to be a powerful tool for enriching
our understanding of the brain.
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